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SUMMARY:  A three steps method is proposed to compute the flow of viscous fluids through 
deformed textile reinforcements. In the first step, In the first step, the in-plane shear of a dry 
plain,weave before and after the shear locking is simulated at the mescoscale on Representative 
Elementary Volumes (REV’s) of the periodic plain weave, accounting for bundle-bundle contacts 
and large transformations, and assuming that bundles behave as transversely isotropic hypoelastic 
materials. The second step consists in simulating the mesoscale flow of viscous fluids through the 
as-deformed solid REV's in order to determine in the third step the macroscopic flow law. For 
Newtonian fluids, numerical results emphasize the drastic changes of the permeability tensor as 
the plain weave is sheared: loss of transverse isotropy and non trivial evolution of the 
components of the permeability tensor. The influence of the flowing fluid rheology is also 
emphasized in case of generalized Newtonian fluids. For these fluids, a method is then proposed 
to formulate the macroscopic flow law, within the framework of the theory of anisotropic tensor 
functions and by using mechanical iso-dissipation curves. 
 
 
KEYWORDS:  shear deformation, textile reinforcement, permeability, non-Newtonian flow, 
meso-macro analysis, computational analysis  
 
 

INTRODUCTION 
 
It is essential to accurately predict polymer flows in woven or non-woven fiber preforms for a 
number of liquid molding processes [1], among which the Resin Transfer Molding process  
(RTM). Nevertheless, the determination with a high precision of the flow description still 
remains difficult. Textiles' manufacturers can provide a material property list which sometimes 
contains the permeability of fabrics, usually measured when fabrics are not deformed:  
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• During the performing stage of RTM woven fabrics undergo mechanical loadings which can 
induce very large deformations of the textiles of which dominant mode is the shear 
deformation [2]. This affects their permeability and has to be understood and quantified.  

• The permeability is a property that is only dedicated to the flow of Newtonian fluids through 
porous media. However, liquid polymers may exhibit non-Newtonian behavior (thermoset 
polymers as they are curing or thermoplastic polymers with long polymer chains), especially 
at the high shear rates they may be subjected when they flow through networks of fibers. 
Under such circumstances, their flow through woven or non-woven textile reinforcements 
may be complex and may severely deviates from that of Newtonian fluids [3-6]. 

 
Within that context, a method is proposed in this work in order to determine the macroscopic 
flow law for non-Newtonian fluids flowing through highly deformed textile reinforcements. The 
method is illustrated here with a periodic woven fabric. It is divided in three steps. Firstly, the in-
plane shear of a dry plain weave before and after the shear locking is studied from a mesoscale 
analysis achieved with a Representative Elementary Volume (REV) of the periodic textile. The 
second step consists in simulating the mesoscale flow through the as-deformed solid REV's in 
order to study the flow of the polymer through the woven fabrics. Numerical results emphasized 
the drastic changes of the permeation law when the considered plain weave fabric was sheared, 
such as its loss of transverse isotropy. The influence of the flowing fluid rheology is also 
emphasized in the case of power-law fluids. In the third a last step, a method is proposed to 
formulate the macroscopic flow law, within the framework of the theory of anisotropic tensor 
functions and using mechanical iso-dissipation curves. 
 
 

STEP 1 – PREDEFORMATION OF THE TEXTILE 
 
We have considered here quite simple textile reinforcement. It is a periodic glass plain weave 
which is balanced since the warp and the weft bundles have identical geometrical and mechanical 
properties. Its geometry is based on circle arcs and tangent segments. It is simple but ensures 
consistency of the model, which means that bundles do not penetrate each other [7]. A scheme of 
the periodic solid REV of such a mesostructure is given in Fig. 1a.  
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Fig. 1  Solid REV of the studied plain weave: geometry and FE mesh before deformation (a) and 
after a pre-shear angle of 53° in the (e1, e2) plane (b). 

 
As extensively described in [2], this solid REV was subjected to a significant in-plane shear. In 
order to compute its corresponding deformed shape, finite elements calculations were performed 
with the commercial FE code Abaqus. Briefly, the following assumptions were stated to run the 
simulation: 



 

• Very large transformations were taken into account. 
• Consistent bundle-bundle contacts were assumed to induce Coulomb friction forces (dry 

friction coefficient f = 0.2) 
• Fiber bundles were assumed to behave like transversely isotropic hypoelastic continua, which 

symmetry direction is locally parallel to the direction of fibers within the bundles. Hence, 
their mechanical behavior is given by the following constitutive relation: 

 
Dσ :C=∇        (1) 

 
where C  is the fourth order incremental stiffness tensor (requiring 5 constitutive parameters, 
i.e. longitudinal El, νl and transverse Et, νt Young moduli and Poisson ratios, and a shear 
modulus G), D is the second order strain rate tensor and ∇σ  is an objective derivative of the 
second order Cauchy stress tensor σ . Such a derivative is computed by following the local 
rotation of fibers during the macroscopic shearing [2]. 

• Calculations were achieved by subjecting the whole solid REV to a mean macroscopic 
displacement gradient corresponding to an in-plane shear. Thereby, the periodic fluctuations 
of the displacement required to accommodate the imposed mechanical loading were 
computed. This allows determining the deformed shape of the solid REV’s. 

 
As an example, Fig. 1b give the deformed shape of the solid REV after an imposed shear angle of 
53°, i.e. largely above the locking angle [2]. 
 

 
STEP 2 – FLUID FLOW MESOSCALE SIMULATION 

 
From the as-deformed solid REV's, associated fluid REV's were then built in order to study the 
flow of the polymer through them [8]. Briefly, solid REV's obtained with the FE code Abaqus are 
represented by means of meshes for each individual yarn. Those meshes have first to be 
transformed in solid entities which are then assembled. Once a unique solid entity is obtained, it 
must be subtracted from a well-chosen volume to give the fluid REV. Keeping same periods as 
the solid ones would generate difficulties to construct the corresponding fluid REV's. The fluid 
period has then been adapted in a appropriate way to easily impose periodic boundary conditions 
(see Fig. 2, [8]). 

e1

e2
e3

(a) (b)

 
Fig. 2  Fluid REV’s corresponding to the solid REV’s sketched in Fig. 1. 

 



 

Therefrom, the mescocale slow flow of a generalized Newtonian fluid through the as-deformed 
solid REV's was analyzed [9] by using an upscaling technique, namely the homogenization 
method with multiple scale asymptotic expansion [10-12]. Hence, by assuming sticking boundary 
conditions at the fluid solid interfaces, the following fluid flow problem deduced from the 
upscaling process was solved within the fluid REV's: 
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where the so-called first order pressure gradient p∇  is constant and given in the entire fluid 
REV's, and where the first order velocity field v  as well as the fluctuation pressure εp are the 
periodic unknowns. Notice that the shear viscosity of the fluid µ which is involved in (2) is a 
convex function of the generalized shear rate DD :2=γ& . Hence, a large class of rheological 
models can be taken into account in the present multiscale approach: Newtonian fluids (constant 
viscosity) [8], power-law fluids [5-6], Carreau-Yasuda fluids [9], regularized versions of the 
Bingham or the Herschel–Bulkley fluids, In this work, for the sake of simplicity, we have 
considered here a power-law fluid, which viscosity μ is simply expressed as: 
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µ0 being the consistency and n the strain rate sensitivity. Within given shear rate ranges, such a 
model usually allows rather good fits of the steady state shear viscosities of thermoplastic or 
thermoset liquid polymers. Lastly, notice that the well-posed boundary value problem (2) was 
solved with a mixt pressure-velocity formulation implemented in the finite element commercial 
code Comsol, by using tetrahedral P2-P1 finite elements. 
 

 
STEP 3 – STUDY OF THE MACROSCOPIC FLOW LAW 

 
The macroscopic description corresponding to the above mesoscale fluid flow problem is 
expressed by the following macroscopic mass and momentum balance equations:  
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where the macroscopic velocity field 〉〈v  is the volume average of the mesoscopic velocity field 
v , and where f is a volumetric viscous drag force. This is directly deduced from the upscaling 
process, without a priori assumption at the macroscale [9].  
 
In the case of a Newtonian fluid, i.e. when µ = µ0 = cst (n = 1), (4b) reduces to the well-known 
Darcy’s law since  
 

〉〈⋅−= − vKf 1
0μ ,       (5) 

 
where K is the permeability tensor.  
 



 

For other generalized Newtonian fluid, the Darcy’s law is not valid any more. However, f can be 
expressed as the gradient of a viscous dissipation potential 〉Φ〈  with respect to the macroscopic 
velocity field 〉〈v  [6,9].  In case of a power-law flowing fluid, this yields: 
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where lc is the characteristic length of sheared fluid at the mesoscale, φ can be defined as the 
“active” volume fraction of pores effectively contributing to the flow [8]: they can be obtained by 
simulating and analyzing the flow in the e1 direction. The positive scalar veq also appearing in the 
last equation is an equivalent macroscopic velocity: any iso-equivalent velocity surface (iso-veq) 
plotted in the velocity space corresponds to an iso-dissipation surface and to an iso-potential 
surface (iso- 〉Φ〈 ). Fitting with a suitable phenomenological form numerical iso-veq surfaces 
deduced from mesoscale simulations allows obtaining the whole macroscopic flow law. In 
accordance with (6), notice that the volumetric viscous drag force f is normal to the iso-veq 
surfaces. For the mesoscopic flow law exhibiting orthotropy (see next section), the following 
continuous form of veq is proposed [9]: 
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It involves velocity invariants Vi defined as: 
 

)summationno(,,,)( IIIIIIiV iii =〉〈⋅⊗⋅〉〈= veev ,  (8) 
 
where the ei’s (i = I, II, III) are the orthogonal principal unit vectors of the macroscopic flow law. 
This form also involves five additional constitutive parameters:  
• A and B can be directly deduced from the mesoscale simulation of the flow along the eII and 

eIII directions, respectively. They characterize the magnitude of the anisotropy along the 
principal directions (see Fig. 4d). 

• Curvature parameters ma, mb and mc are chosen to fit the above continuous iso-veq surfaces to 
numerical ones. They equal 2 in case of Newtonian flowing fluids. 

 
 

APPLICATION TO THE PLAIN WEAVE 
 
The above methodology was achieved on the non deformed and sheared plain weaves, such as 
those sketched in Fig. 2. A first set of simulations was obtained by considering a Newtonian 
flowing fluid [8]. Two types of boundary conditions were used, i.e. full 3D periodicity and 2D in-
plane periodicity + sticking boundary conditions at x3 = ±h/2, h being the thickness of the plane 
weave. Results have been sketched in Fig. 3. The graph of Fig. 3a represents the evolution, in the 
reference frame (e1,e2,e3) (which corresponds to the principal reference frame (eI,eII,eIII)), of the 



 

components K11, K22 and K33 of the permeability tensor K expressed as functions of the imposed 
shear angle. The graph plotted in Fig. 3b gives the evolution of the permeability ratios K22 / K11 
and K33 / K11 as functions of the imposed shear angle. These two graphs bring up the following 
comments [8]: 
• The non-deformed plain weave displays transverse isotropy (K11 = K22 ≠ K33). By contrast, as 

soon as it is sheared, it exhibits orthotropy (K11 ≠ K22 ≠ K33). K22 undergoes a monotonous 
decrease with the shear angle. K11 increases and K33 is nearly constant for angles ranging 
from 0° to 30°. For larger shear angles, the two latter components decrease. 

• By comparing permeabilities between the extreme configurations, K11 and K22 are found to 
decrease by a ratio 2 and K33 with a ratio 10. Notice that the trend recorded for K11 is 
experimentally retrieved by Smith et al. [13] who used plain-weave fabrics. Hammami et al. 
[14] performed experiments till 30° on JBMartin NCS fabric and also retrieved the same 
trend for K11 and for K22. The complex trends emphasized in Fig. 3a are ascribed to changes 
of both the porosity and the morphology of the plain weave during the shearing of the plain 
weave [8]. Such changes are induced by two closely coupled deformation meso-mechanisms: 
the relative motions of tows and their intrinsic deformation. For instance, the drastic decrease 
of K33, which is probably due to the locking of the holes perpendicular to the e3 direction, is 
induced both by the relative rotation of tows and their lateral crushing in the vicinities of 
contact zones (see Fig. 1). 

• The evolution of permeability ratios with respect to the shear angle again highlights the loss 
of in-plane permeability isotropy when the fabric is sheared. We observe a decrease of 
K22 / K11 and K33 / K11. This trend is also retrieved by Lai and Young [15] and Slade et al [16].  

• As shown in Fig. 8a, the evolution of the in-plane permeabilities of a single mat with the 
shear angle (2D in-plane periodicity) follows the same trend as that observed for the multi-
layers preform (3D periodicity). However, they are five times smaller. Moreover, as depicted 
in Fig. 3b, shearing the single layer reinforcement induces stronger anisotropy than for the 
multi-layers one.  

 
Fig. 3  (a) Computed permeabilities in the principal axes for different imposed shear angles. In 
continuous lines, a multi-layers configuration is considered while a single layer configuration is 

studied in dashed lines. Square marks : K11; Diamonds: K22 and triangles: K33. (b) Principal 
permeability ratios K22 / K11 (diamonds) and K33 / K11 (triangles) for different imposed shear 

angles to the woven fabrics.  
 
 



 

Then, the proposed expression of veq was compared to numerical iso-dissipation surfaces 
obtained from numerical simulation achieved on the REV’s shown in Fig.  2, for a Newtonian 
(n = 1) and a power-law shear thinning fluid (n = 0.3). Results which are given in Fig. 4, conjure 
up the following comments: 
• The numerical iso-dissipation surfaces (stars in Fig. 4) exhibits transverse isotropy for the 

non-deformed REV and when the fluid is Newtonian (see Fig. 3a and 4a). It is important to 
notice that such symmetry is broken for the same REV and for a power-law fluid (see Fig. 3b): 
the macroscopic flow law then exhibits orthotropy. A similar trend was already emphasized 
when studying the transverse flow of power-law fluids through square arrays of parallel fibers 
with circular and identical cross sections [6]. 

• Whatever the fluid considered, shearing the plain weave (i) increase the anisotropy (iso-
dissipation surfaces are stretched) and (ii) induce a more difficult flow (iso-dissipation 
surfaces are smaller). Indeed, compared to the non deformed iso-dissipation surface plotted in 
Fig. 3b, the iso-dissipation surface obtained for the same fluid but with the sheared REV is (i) 
flattened in the e3 direction and (ii) smaller (Fig. 3c). 

 

 

Fig. 4  Numerical (stars) and fitted (continuous surfaces) iso-dissipation surfaces (100 W m-3) 
plotted in the velocity space and obtained for the non deformed plain weave (a, b) and the 53° 
shear configuration (c, d), for a Newtonian fluid (µ0 = 1 Pa s, n = 1) (a, c) and for a power-law 

shear thinning fluid (µ0 = 1 Pa sn, n = 0.3) (b, d). Numerical results (stars) have been determined 
by solving the localisation problem (3) while the continuous surfaces are modeled by 

phenomenological equations (7-8). 
 

  



 

The format of veq (continuous surfaces given by (7-8)) allows a nice fit of numerical iso-
dissipation surfaces (stars) plotted in the velocity space, whatever the considered textile (non-
deformed and sheared) and type of fluid (Newtonian and power-law). Consequently, the method 
proposed in this work allows obtaining fairly good analytical macroscopic flow law that could be 
implemented without major difficulties in mould filling software. 

    
 

CONCLUSION 
 
In this work, we have presented a method in order to investigate the effects of (i) the deformation 
of textile reinforcements and (ii) the non-Newtonian rheology of polymers on their macroscopic 
flow law through the considered fabrics. The first step of the method consists in simulating the 
mesoscale pre-deformation of dry textile REV’s. A special attention was paid in order to limit 
simplifying assumptions that could induce biases on the deformed shape of solid REV’s: choice 
of consistent initial geometry of solid REV’s, numerical simulation with large geometrical 
transformations, appropriate periodic boundary conditions, bundle–bundle mechanical contacts 
and reasonable hypoelastic model to mimic the intrinsic behavior of fiber bundles. This first step 
was applied to the in plane shear of a symmetric glass plain weave. The shape of the deformed 
solid REV seems realistic, even if further efforts are required to improve the quantitative 
validation of the simulated REV deformed shapes (ongoing work [17]). The second step consists 
in simulating the mesoscale flow through the as-deformed solid REV’s. Despite technical 
difficulties encountered to obtain suitable fluid REV’s from solid ones, numerical results 
obtained for Newtonian fluids have emphasized the drastic changes of the permeability tensor 
when the considered plain weave fabric was sheared. The possible non-Newtonian rheology of 
polymers was also investigated, showing that the macroscopic flow law could also be 
significantly affected by it. Lastly, the method proposed in [9] to build macroscopic analytical 
flow law in case of generalized Newtonian fluids was tested and successfully validated in this 
work. The proposed analytical macroscopic flow law could be implemented without major 
difficulties in mould filling software. 
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